

CRITERIA NO :7 INSTITUTIONAL VALUES AND SOCIAL RESPONSIBILITIES

METRIC NO. 7.1.10 QUALITY AUDITS ON ENVIRONMENT AND ENERGY ARE REGULARLY UNDERTAKEN BY THE INSTITUTION

Exhibit No:	Document Name	Page No. / Link
7.1.6 - A	GREEN AUDIT REPORT	1
7.1.6 - B	GREEN AUDIT CERTIFICATE	46
7.1.6 - C	ENERGY AUDIT CERTIFICATE	48
7.1.6 - D	ENVIRONMENT AUDIT CERTIFICATE	50
7.1.6 - E	BEYOND THE CAMPUS ENVIRONMENTAL PROMOTIONAL ACTIVITIES	52

GREEN AUDIT REPORT

(Covering Energy, Environment & Campus Greenery)

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

PERIOD OF AUDIT

10 MARCH 2020

(Audited and Accounted from March-2019 to Feb-2020)

AUDIT CONDUCTED AND SUBMITTED BY

RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING

(Chennai Coimbatore

Erode)

Mobile: +91-80567 19372, 99420 14544 (Whatsapp) E-mail: ramkalamcect@gmail.com

Page 2 of 63

Chapter No.	Description	Page No.
1.	Acknowledgement	3
2.	Introduction to Energy-Environment-Green Audit Process	5
3.	Executive Summary	11
	PART-A: ENERGY AUDIT REPORT	
4.	Energy Conservation Proposals (ENCONS)	14
	PART-B: ENVIRONMENTAL AUDIT REPORT	•
5.	Analysis of Water Consumption	24
6.	Estimation of CO ₂ Emission and Neutralization (Electricity , Transport, & LPG)	27
7. Usage of Chemicals, Salts & Acids, (Handling, Storage & Best Operating Practices)		32
8.	Solid Waste Management	36
	PART-C: GREEN AUDIT REPORT	•
9.	Roof Top Solar PV Power Plant (Green Energy Generation)	40
10.	List of Matured Trees in the College Campus (Green Coverage)	42

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

1. ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING (RK-CECT), Coimbatore – 641 062 is thankful to the Management, Faculty and Technical team members of **M/s.** AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET), Kinathukadavu, Coimbatore, Tamilnadu, India - 642 109 for providing an opportunity to conduct a detailed Green Audit (Including Energy, Environment and Campus Greenery) for college promises.

It is our great pleasure which must be recorded here that the management of **M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET)** extended all possible support and assistance resulting in expeditious completion of the audit process. The audit team appreciates the cooperation and guidance extended during course of site visit and measurements. We are also thankful to the all those who gave us the necessary inputs and information to carry out this very vital exercise of green audit.

Finally, we offer our sincere thanks to all the members in the engineering division/ technical/non-technical and office members who were directly and indirectly involved with us during collection of data and conducting field measurements.

Management Team Members						
Shri. A. NAGARASAN Managing Trustee, ACET						
Shri. T. SUBRAMANIYAN	Chairman, ACET					
Shri. K. PAVITHRAN	Secretary, ACET					

Audit Team Member				
	BEE Certified Energy Auditor (EA-27299)			
	Lead Auditor-ISO-14001:2015 (EMS),			
	IGBC AP, GRIHA CP			
Dr. S.R. SIVARASU	Managing Partner: RK-CECT,			
	Email: ramkalamcect@gmail.com			
	Mobile: +91- 80567 19372, 99420 29372			
Shri. B. SATHISH	Audit Associate, RK-CECT			

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

2. INTRODUCTION

ТО

ENERGY-ENVIRONMENT-GREEN AUDIT PROCESS

2.1: Preface about the Institution:

M/s. Akshaya College of Engineering Technology (ACET) was established by Akshaya Charitable Trust in the year 2009. The Trust was founded by professionals with more than 25 years of industrial experience to impart quality technical education and ethical as well as societal values to the students. The institution offers five UG and three PG programmes. The institution has earned acclaim for its excellent infra-structure, well equipped laboratories and highly qualified dedicated faculty members. The institution is recognized under section 2(f) of the UGC Act 1956. It is an ISO 9001:2015 Certified Institution. Within a decade of its existence, the institution has earned laurels for its academic, placement, sports and co-curricular achievements. Institution of Engineers (India) has granted Life Membership to our Institution under the code IM000623-5. ACET is now offering Under Graduate (UG), PG and Ph.D Programmes namely;

UG Programme	PG Programme			
Civil Engineering	Structural Engineering			
Computer Science and Engineering	VLSI Design			
Electronics & Communication Engineering	Computer Science and Engineering			
Mechanical Engineering	Research Programme			
Mechatronics Engineering	Electronics & Communication Engineering			

2.2: Vision Statement:

• To develop into a premier institution for disseminating high quality technical education by establishing best practices in teaching, learning and research, capable of making significant contribution to individual and societal empowerment.

2.3: Mission Statement:

- To achieve academic diligence through effective teaching-learning process.
- To foster cooperation between industry and academia.
- To prepare the graduates for lifelong learning by adopting ethical and responsible engineering practices.
- To encourage entrepreneurship and develop sustainable technologies for the benefit of global society.
- To establish State-of-the-art facilities and techniques to facilitate quality education.

2.4: Mission Statement:

 Akshaya is committed to provide quality education and inculcate ethical values in students and faculty to achieve Global Standards in Academics and Research through self-evaluation and continuous improvement.

2.6: Foreword about Energy-Environment-Campus Greenery Audit Activity:

- Energy-Environment-Green audit is an inspection survey and is a major tool for analysing the present utilization of all types of energy, assessment of environmental condition and development of Campus greenery mapping with CO₂ emission.
- The primary objective of the green audit is to reduce the amount of energy utilization, reduction of water consumption, improve the green coverage without negatively affecting the productivity or comfort level.
- The vision of the green audit with a focus on energy consumption to assess the viability to upgrade the energy efficiency measures prior to investing extensive resources in electrical and thermal energy systems.

2.7: Scope of the Audit:

- Detailed audit process in the college campus with a main focus to identify judicious usage of energy and sustainable environment.
- Identification of possible reduction of present energy consumption and thereby reduce the Carbon foot print. Also ensures to focus on Green energy generation in the college campus.
- Best practices to be followed in energy conservation, environmental management, recommended safety measures and continuous energy monitoring system.
- Providing constant awareness for both faculty and students in Energy, Environment and Ecology.

2.8: Outcomes of the Audit Process:

• Recommendations based on objective and subjective measurements with achievable Energy Conservation (ENCON) proposals with Low cost and Cost investments.

- Minimization of present energy cost by adjusting and optimizing energy usage and reduction of energy wastage without affecting the regular activities.
- Development of rule based system for safety measures to be followed and formation of best practicing guidelines for major energy consuming system.
- Providing a pathway to become a sustainable environment inside the college campus and nurture the importance of less energy with more productivity.
- Formation of methodology for long term road map for maintaining green environment within the campus and encourage the stakeholders for continuous improvements.

2.9: Period of Audit:

2.10: Coverage in Green Audit Process:

2.11: Standards Adopted:

- BEE Bureau of Energy Efficiency Guidelines to conduct the Energy Audit.
- The Greenhouse Gas Protocol A Corporate Accounting and Reporting Standard (Revised Edition) released by World Resources Institute & World Business Council for Sustainable Development – 2014.
- ISHRAE-10001:2016 Indoor Environmental Quality Standard, Ist Version: 2016-17.
- IS-3646-Part-1 Recommended Values of Illuminance as per National Building Code (NBC): 2005.

S. No.	Activity	Focused Area and Location of Audit
1.	Introduction Meetings	Meeting with core committee members
2.	Electrical Energy	Assessment on Power House, APFC/Fixed capacitors, Switch rooms, Electrical distribution boards, Diesel generator, Diesel Storage of diesel
3.	Solar PV System (Renewable)	Assessment on PV System, Mounting, Orientation, Cleaning schedule, Integration at MV panel, AJB, AC distribution and Inverter systems
4.	Water Pumping System	Water storage, Pumps location, Water distribution, Dimensions of sump, tank and well capacity.
5.	Water Distribution System	Assessment on water distribution, Water inlet & outlet and Layout analysis, RO plant
6.	Sewage Treatment Plant (STP)	Collection of waste water, Main tank storage, Chemical dosing, Water agitator and separation, Treated water outlet and distribution and Treatment/usage of sludge.
7. HVAC System		Assessment on indoor and outdoor units, Capacity/Star rating, Make & Model, Gas used, Assessment on maintenance record.
8.	Un-interrupted Power Supply (UPS)	Assessment on capacity, Location, Condition monitoring of battery voltage and UPS earthing.
9.	Interior Lighting System	Assessment on both Interior and Exterior lighting used in college and other areas.
10.	Green Coverage	Assessment on matured trees, location/coverage, Flowing shrubs and bushes.
11.	Transport System	Assessment of total no. of vehicles, Fuel used, Fitness certification and Assessment of pollution certificates
12.	Hostel Cooking System	Assessment on Boiler and allied system, Feed water, Fuel usage, Steam consumption, and Ash removal. Consumption of LPG, Gas yard with distribution system and Safety precautions.
13.	Closing Meeting	Concluding meeting with faculty representatives at conference hall

2.13: List of Facult	y Members Involved in Audit Process & Data Collection:

S. No.	Faculty Details	Contribution		
1.	Dr. S. KAPILAN HoD/Department of Civil Engineering & PRO, ACET Shri, S. JEEVANANDHAM	Collection of Transport Details		
2.	Assistant Professor, Department of CSE, ACET			
3.	Shri. P.A. EDWIN FERNANDO Assistant Professor, Department of Civil Engineering, ACET	Green Audit Facilitator		
4.	Smt. NIRMALA Head of the Department, S&H, ACET	Collection of Chemicals / Acids / Salts		
5.	Smt. D. GUNAPRIYA HoD/Department of EEE, ACET	Collection of electrical energy consumption, Diesel		
6.	Shri. R. MANOHARAN System Admin, ACET	consumption for DG, List of Lightings and Fans, Collection		
7.	Shri. K. SAKTHIVEL Lab Assistant, Department of EEE, ACET	of E-waste data, Fire extinguishers, Water pumping		
8.	Shri. B. SHANMUGHAM Electrician & Plumber, ACET	Water distribution system		
9.	Shri. K. ANANDAN Supervisor, Maintenance, ACET	Collection of LPG Consumption for cooking application, Water Taps, Basin and Distribution		

2.14: List of Measuring Equipment's used:

S. No.	Name of the Equipment	Model/Range
1.	Power Quality Analyser (Three Phase)	Fluke 434 –Series II
2.	Power Quality Analyser (Single Phase)	ALM-10
3.	Multifunction Electrical Installation Meter	Sonel-MPI 540
4.	Infrared (IR) Thermal Imager	Fluke TiS-20
5.	Digital Clamp & Multi Meter (True RMS)	Fluke – 317 & 115
6.	Digital Anemometer & Photo Tachometer (Laser)	Extech-AN-100 & Extech-RPM-33
7.	Other general electrical/mechanical m	neasuring instruments.

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

3. EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

2.1: Electrical and LPG Energy Analysis:

After conducting a detailed audit in M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET), Kinathukadavu, Colmbatore, Tamilnadu, India-642 109; the audit team has come out with <u>8 Energy</u> <u>Conservation Proposals (ENCONs</u>) and the summary of all the ENCONs are given below:

S. No.	Description	Parameters				
	Description	Present	After	Savings		
1.	Annual Energy Consumption (Electricity only)	2,40,980 kWh + 5,946 kg of LPG	1,49,933 kWh + 5,768 kg of LPG	91,047 kWh + 178 kg of LPG		
2.	Annual Energy Cost	Rs. 23.7 Lakhs	Rs. 16.0 Lakhs	Rs. 7.7 Lakhs		
3.	Initial Investment Required	-	Rs. 27.0 Lakhs	-		
4.	Simple Payback Period	-	Nearly 3.5 Years			
5.	% Reduction of Energy Consumption	-	38 % of Electric	al + 3 % of LPG		

3.2: Environmental Analysis (CO2 Neutralization):

S.	Description Total Annual Consumption		Type of Fuel and their CO ₂ Conversion Process						
No.			Electricity	Die	sel	Petrol	LPG	Wood	
1			on	63,411.8 Litre (Vehicle + DG)		2,241 Litre (Vehicle)	5,946.4 kg	39.8 kg	
2.	CO2 Emission (Tons/Annum)	A	197.6 167.4		5.4	17.8	59.7		
3.	Total CO ₂ Emission			B	447.9 Tons/Annum (†)				
4.	No. of Matured Trees Available			D	458				
5.	CO ₂ Neutralized due to Trees			E	10.0 Tons/Annum (1)				
6.	CO ₂ Neutralized due to SPV Plant			G	27.1 Tons/Annum (↓)				
7.	CO ₂ Neutralized after implementing ENCON			1	75.0 Tons/Annum (1)		n (‡)		
8.	Amount of CO ₂ to be Neutralized (Final)			1	335.	3 Tons/Ann	um		
9.	Per Capita CO ₂ Emission (Considering Students +Staff			s)	0.38 To	ns / Perso	n (↔)		

Apart from the Energy Conservation and Environmental analysis, the audit team proposes nearly

<u>11 technical recommendations</u> focusing on energy, water, environment, safety and best operating practices to be followed.

Audit Conduced & Complied by,

S.R.S.m

Dr. S.R. SIVARASU

Dr. S.R. SIVARASU, Ph.D., BEE Certified Energy Auditor (EA-27299) Lead Auditor - ISO 14001: EMS IGBC - AP, GRIHA - CP Mobile: 80567 19372, 99420 29372 E-Mail: ramkalamcect@gmail.com

12

Table-1: Energy Conservation Proposal (ENCON) along with Annual Energy and Financial Savings

	Proposed Energy Conservation Measures	% Saving &		d Savings	Initial Investment	Simple	CO ₂ Reduction	Ref.
S. No		Source	Annual Energy Savings (kWh)	Monetary Savings (Rs.)	(Rs.)	Payback Period	(Tons/Annum)	Page. No.
			Zero Cost Inv	estment				
1.	Increasing the Energy Production from the Roof Top SPV using regular Panel Cleaning Schedule	1 % (SPV)	1,270	10,541	Zero Cost	Immediate	1.0	19
		Lo	w Cost Investment (Le	ess than 2.0 Lakhs)				
2.	Astronomical Timer Based Street Lighting Automation System	50 % (Street Light)	931	7,727	10,000	1.3 Years	0.8	21
3.	Reduction of Cable Losses and Active Power Consumption using PCC level Compensation	1% (Electrical)	2,410	20,003	17,500	0.9 Years	2.0	22
4.	Replacement of Existing UPS with Centralized UPS & reduction of E-Waste Management	2 % (UPS)	9,636	79,979	1,60,000	2.0 Years	7.9	24
		Medi	um Cost Investment (2.0 Lakhs to 5 Lakhs)		1		
5.	Retrofit of AIRCON Energy Saver, AC House Keeping & Optimization of AC Operation	10 % (AC)	10,000	83,000	2,00,000	2.4 Years	8.2	27
6.	Replacement of Fluorescent Lamps with Energy Efficient Lamps (Swap FTL to LED Lamps)	50 % (Lamps)	12,480	1,03,584	1,78,000	1.7 Years	10.2	30
		ŀ	ligh Cost Investment ((Above 5.0 Lakhs)			•	•
7.	Performance Enhancement & Reduction of Energy in AC Circuits using Mist Pre-Cooler	10 % (AC)	23,800	1,97,540	6,90,000	3.5 Years	19.5	34
8.	Replacement of Existing Convention Ceiling Fans into EC-BLDC Fans	50 % (Fan)	30,520	2,53,316	14,35,000	5.7 Years	25.0	36
9.	Reduction of LPG Consumption using Regular Burner Cleaning and Burners Swapping	3 % (LPG)	178 kg	10,377	5,000	0.5 Years	0.3	38
Total		91,047 kWh + 178 kg of LPG	Rs. 7,66,067	Rs. 26,95,500	-	75.0	-	

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

<u>PART-A</u> ENERGY AUDIT REPORT

4. ENERGY CONSERVATION

PROPOSALS (ENCONs)

ENCON-1	Increasing the Energy Production from the Roof Top Solar Photovoltaic System using regular Panel Cleaning Schedule	
Assessment Area	Energy generation from Roof Top Solar Photovoltaic System	
Observations	 94.08 kW roof top solar PV plant was installed in the IET academic block; generating electricity to feeding to MV panel (located back side of the mechanical block). However; the solar panels must be cleaned at regular interval as the dust accumulation must reduce the expected power output and hence it is a loss of generation. In general; a minimum of 1 % power generation may be improved by regularly cleaning the panels. Most of the bulk power generating solar PV plant has separate panel cleaning schedule (pipes, cleaning detergents and man power) to operate the same. 	
Recommendation (Target)	 It is highly recommend to clean the solar panel (ordinary water cleaning is enough) once in 15 days ensures a minimum1 % higher productivity for the same installed capacity. Prepare a separate cleaning schedule; assign a team of members with higher degree of supervision. Ensure the power output before and after cleaning. Visually inspect the panels for any damage, cracks, stains and other abnormalities. Even conduct an IR thermography study on the solar panels, solar DC and AC connectors, AJB and Inverter once in a year. 	

Parameters	Description		
Installed capacity of SPV Plant	130 kW (Grid Tied c	onnected in MV Panel)	
Location	Roof Top of A	Roof Top of Academic Block	
Energy Calculation	Before	After	
Expected % of Energy Saving	-	1 % Improvement	
Expected Energy Generation	1,27,008 kWh	1,28,278 kWh	
(Considering 94.08 kW x	4.5 sunshine hours/day x 30	0 days/annum)	
Annual Energy Saving	-	1,270 kWh	
Annual Financial Saving	-	Rs. 10,541 /-	
(1,270 kWh	x Rs.8.30/kWh) = Rs. 10,54:	1/-	
Initial Investment	-	Zero Cost	
Simple Payback	-	Immediate	
CO ₂ Reduction	-	1.0 Tons/Annum	

ENCON-2	Astronomical Timer Based Street Lighting Automation System		
Assessment Area	Street lighting automation for the entire campus		
	• The college now has nearly 47 no's of street lights (9 W CFL each		
	and the total power capacity is around 0.43 kW) located throughout		
Observations	the entire campus.		
	• All the lamps are controlled in two control switches and are		
	operated mostly between 6.00 PM to 6.00 AM (12 hours/day) and		
	this may vary depends on the season.		
	• For street lighting system, Astrological timer must be the best		
	choice for lighting automation as this will definitely saves		
	considerable amount of energy by preventing the lights to turn on		
	during the availability of enough natural lighting.		
	Also it also recommended to automate the ON/OFF strategies of		
Recommendation	the lighting circuit based on the required like; all the lamps on		
(Target)	during evening 6.00 PM to 8.00 PM and then alternate lamps will		
	only in on condition up to 10.00 PM. (50 % reduction of energy for		
	2 hours of operation).		
	• After 10.00 PM to early morning 6.00 AM; lamps located in the		
	vulnerable places must be in ON condition. (Further 25 %		
	reduction of energy for 8 hours)		

Parameters	Description	
Total no. of street lights	47 No's of 9 W each	
Energy Calculation	Before	After
Expected % of Energy Saving	-	50 %
Expected Energy Generation	1,862 KWh	931 kWh
(5.1 kWh/da	y considered for all 365 days	s)
Annual Energy Saving	-	931 kWh
Annual Financial Saving	-	Rs. 7,727 /-
Initial Investment	-	Rs. 10,000 /=
(Since ACET is an technical institution	; this automatic circuit may	be taken as a project and
makes this EN	ICON at zero initial investme	nt)
Simple Payback	-	1.3 Yeas
CO ₂ Reduction	-	0.8 Tons/Annum

ENCON-3	Reduction of Cable Losses and Active Power Consumption using Load		
	End Capacitor Compensation (PCC Level)		
Assessment Area	Electrical Distribution System		
Observations	 LT electrical system from power house is distributed through various electrical distribution panel board conveniently located in each building (with a total of 5 distribution rooms) all over the college campus. Supply side power factor is being maintained; whereas the load end PF is to be corrected by connecting suitable values of FC, mostly at the distribution panels. 		
Assessments	 In any electrical distribution network, the distribution losses maaccount for nearly 2 % and this can be reduced by i) Selecting proper cable size (class 1 or 2 cables) with reduced resistance and i Compensate the distribution losses by connecting load en capacitors at the load point and/or at DB level. This method has many advantages like i) reduction of kVA deman (applicable for HT consumer), ii) reduction of distribution losses an iii) maintaining the terminal voltage from source to load end. 		
Recommendation (Target)	• Connect suitable value of FCs (Nearly 10 kVAr, 3-Phase, 440/400 V, Heavy Duty) at the PCC input and try to reduce the line loss.		

Parameters	Description			
No. of DBs (Approx. Value)	5 No's. (at the entry of each block)			
kVAr required to connected	10 kVAr (3-Phase, 400 V, Heavy Duty FC with a total of 30 kVAr for all 3 DBs)			
Energy Calculation	Before	After		
Expected % of Energy Saving	-	1%		
Annual Energy Consumed	2,40,980 kWh	2,38,570 kWh		
Annual Energy Saving	-	2,410 kWh		
Annual Financial Saving	-	Rs. 20,003 /-		
Initial Investment	-	Rs. 17,500 /-		
(Heavy duty, box type capacitor cost around Rs.350/kVAr and for 10 kVAr; the initial cost is				
3,500/ Installing for 5 DBs; the overall initial investment is Rs. 17,500 /-				
Simple Payback	-	0.9 Years		
CO ₂ Reduction	-	2.0 Tons/Annum		

ENCON-4	Replacement of Existing UPS with Centralized UPS and reduction of Battery based E-Waste Management		
Assessment Area	Energy Conservation and E-Waste reduction in UPS System		
Assessments	 The college has 9 no's of UPS with a total capacity of 167.5 kVA (with different individual power rating and back up capacity). Each UPS operates at different loading factors (mostly with less than 50 %) and 128 no's of batteries of different Ah was connected in line. All the UPS were used to supply i) computers in the department labs and ii) sophisticated equipment's. 		
Recommendation (Target)	 It is highly recommended to revamp and replace all the UPS into equivalent 2 no's of 50 kVA centralized UPS powering all the entire loads. New UPS system may be designed with 30 No's of 50 Ah (VRLA batteries) each and hence the total no. of batteries now is 60 no's. Nearly 53 % of reduction of battery quantity achieved and hence reduces the E-waste. 		

S.	Description	Parameters	
No.	Description	Old System	New System
1.	Power rating of UPS	167.5 kVA/134 kW	2 x 50 kVA = 100 kVA/80 kW
	(Mostly at 0.8 c	operating PF)	
2.	Self-power consumption at rated capacity of operation (kW)	2.7 kW	1.6 kW
3.	Energy Power Savings	-	1.1 kW
4.	Annual Energy savings (kWh) ²	-	9,636 kWh
5.	Financial Savings	-	Rs. 79,979 /-
6.	Initial Investment	_	Rs. 1,60,000 / -
7.	Simple Payback Period	-	Nearly 2.0 Years
8.	CO ₂ Reduction	-	7.9 Tons/Annum
9.	Total no. of batteries	128	60 (53 % ↓)
	<u> </u>	- Assuming self-nower	loss as 2 % as star

(1 - Assuming self-power loss as 2 % as standard.

² - Considering 8,760 running hours per annum)

ENCON-5	Retrofit of AIRCON Energy Saver, AC House Keeping and Optimization of Air Conditioning Operation
Assessment Area	Energy Conservation in Air Conditioning Systems having lesser value of EER & older installation (2010)
Observations	• There are about 25 No's of air conditioning units are available and are located in various places inside the college.
Assessments	 The running hour of each AC units differ and purely depends on the availability of the human beings in the respective rooms/laboratories. The detailed list of AC available is shown in Table-3: indicating their star rating, tonnage and their power capacity.
Recommendation (Target)	• Install AIRCON energy saver gadget which works on dynamic un-saturation principle in conjunction with the sensor algorithms so that the air conditioners run hours are cut by 20 to 25 %.

Parameters	Description		
Proposed AIRCON fittings	ed AIRCON fittings 25 No's		
Energy Calculation	Before	After	
Power Consumption	50.1 kW	45.1 kW	
(Power Consumption is based on <i>EE</i>	$ER = \frac{3.516}{kw/_{Ton}}$ and assuming 80	0 % of loading condition)	
Expected Reduction of Power	-	5.0 kW	
(AIRCON provides a minimum sav	ings of 10 % from the presen	t power consumption)	
(Consideri	ng 2,000 hours per annum)		
Annual Energy Savings	-	10,000 kWh	
Annual Financial Saving	-	Rs. 83,000 /-	
Initial Investment	-	Rs. 2,00,000 /-	
(The Initial cost of the A	IRCON unit is about Rs. 8,00	0 per piece)	
Simple Payback	-	Nearly 2.4 Years	
CO ₂ Reduction	-	8.2 Tons/Annum	

ENCON-6	Performance Enhancement and Reduction of Energy Consumption in AC Compressor using Mist Pre-Cooler
Assessment Area	Energy Conservation in Air Conditioning Systems inside the Campus
Observations	 Mist pre-cooler is one successful retrofit system to be implemented to any of the AC outdoor units. Table-4 shows the list of Multi-variant Air Conditioning Available in the College Campus. It saves the compressor running time (and also power) by reducing the condenser temperature and there by saves the life of the compressor.
Assessments	• Mist cooling is based on the concept of evaporative cooling. Evaporative cooling is the process of removing heat from the air by using water vapour. The misting system converts ordinary water into billions of micron sized water particles by using spray nozzles.
Recommendation (Target)	 It is recommended to install the mist cooling system in higher power and continuous running ACs & ascertain the performance. Implement the mist pre-cooler system and coupling of water mist with condenser reduces the compressor power up to 25%. The application of water mist condenser, inlet air pre-cooling could decrease the Specific Energy Consumption (SEC).

Parameters	Description			
Proposed AIRCON fittings	69 No's			
Energy Calculation	Before	After		
Power Consumption	119.4 kW	107.5 kW		
(Power Consumption is based on $EER = \frac{3.516}{kW/Ton}$ and assuming 80 % of loading condition)				
Expected Reduction of Power	-	11.9 kW		
(Mist cooler provides a minimum sa	vings of 10 % from the pres	ent power consumption)		
(Considerin	g 2,000 hours per annum)			
Annual Energy Savings	-	23,800 kWh		
Annual Financial Saving	-	Rs. 1,97,540 /-		
Initial Investment	-	Rs. 6,90,000 /-		
(The Initial cost of the MIST cooler	setup is about Rs. 10,000 p	per unit of installation)		
Simple Payback	-	Nearly 3.5 Years		
CO ₂ Reduction	-	19.5 Tons/Annum		

ENCON-7	Replacement of Fluorescent Lamps with Energy Efficient Lamps (Swap FTL to LED Lamps)	
Assessment Area	Compact Fluorescent Lighting System located both in college and hostel area with magnetic/electronic choke fitting.	
Observations	College Area – Main Building (Including Class, Lab and Others) – Kindly refer the Annexure-I	
Assessments	 The college is now replacing FTL into LED and this step must bring considerable amount of energy saving. In general 40 W FTL consumes 44 W and 36 W FTL consumes 40 W including power consumption of the Choke. In order to reduce the lighting bulb failures, it is necessary to supply a safe working voltage (say about 210 V) through a dedicated Servo Stabilizer (SS) connected at the output of the lighting DB. 	
Recommendation (Target)	• College administration has to replace the FTL to LED (20 W with choke) of branded round LED tube fitting without Blue Tinge.	

Parameters	Description		
Total No. of FTL Available	FTL 40 W – 356 No's (44 W including choke) : 15.7 kW		
	FTL 36 W - 89 No's (40 W in	cluding choke) : 3.6 kW	
Considering only hostel (boy	s +girls) buildings with a total of 44	5 No's contributes 19.3 kW	
Power rating of new lamps	LED-18 W (One to One – 20 W ind	LED-18 W (One to One – 20 W including choke) with the total	
r ower rating of new lamps	power consumption of (2	20 x 445) = 8.9 kW	
Approx. Operating Hours	4 hours/day & 300 days/Annu	m = 1,200 Hours/Annum	
	(The actual operating hours may change depends on the		
(Average assumed value)	applications)		
Energy Calculation	Before	After	
Power Consumed (Approx.)	19.3 kW	8.9 kW	
Expected Power Savings	_	10.4 kW	
Annual Energy Saving	-	12,480 kWh	
Annual Financial Saving	-	Rs. 1,03,584 /-	
Initial Investment	-	Rs. 1,78,000 /-	
(Considering Rs.400/Lamp fittings of branded LED Day Cool Light)			
Simple Payback	-	Nearly 1.7 Years	
CO ₂ Reduction	-	10.2 Tons/Annum	

ENCON-8	Replacement of Existing Conve	ntion Ceiling Fans into	
ENCON-8	Electronically Commutated BLDC Fans		
Assessment Area	Energy Conservation Ceiling fans located in the College Area		
Observations	College Area including all Building, Class, Lab and Other areas		
Assessments	 BLDC fans operate in less energy with same air delivery. Similarly these fans generates lesser noise, runs with inverter supply, remote control based speed control, Aesthetic look and better lifespan. Conventional fans consume 1 unit of electricity for approximately 12-13 hours of running period, whereas the BLDC fans consume the same 1 unit of electricity for nearly 28-29 hours. 		
Recommendation (Target)	• Recommended to replace the existing conventional fans into EC BLDC fans in a phased manner and ensure good energy saving.		

Parameters	Description		
Total No. of Fans available	Considering only college buildings with a total of 624 No's (Assuming 70 W power consumption for conventional fans)		
Approx. Operating Hours (Average assumed value)	4 hours/day & 350 days/Annum = 1,400 hours/annum (The actual operating hours may change depends on the applications)		
Energy Calculation	Before	After	
Power Consumed (Approx.)	43.7 kW	21.8 kW	
Expected Reduction of Power	-	21.8 kW (50 % ↓)	
Annual Energy Saving	-	30,520 kWh	
Annual Financial Saving	-	Rs. 2,53,316 /-	
Initial Investment	-	Rs. 14.35 Lakhs	
(Considering Rs.2,500/fan - Salvage value of Rs. 200/fan for old fan = Rs. 2,300/- per fan)			
Simple Payback	-	Nearly 5.6 Years	
CO ₂ Reduction	_	25.0 Tons/Annum	

(Note: BLDC fans consume **less power when it operates at low speeds** which further saves energy. Further a conventional fan draws nearly about **100 VA**, whereas the EE fan draws only **30 VA**. This will be more beneficial for HT consumer as direct reduction of kVA rating).

ENCON-9	Reduction of LPG Consumption using Regular Burner Cleaning and Swapping of Active Burners.		
Assessment Area	LPG Consumption (Cooking System in Hostel Mess)		
Assessment	 Cooking system in the college mess mainly uses LPG as energy carrier and utilize Gas stoves as a medium to cook the food. Gas stoves are easy to maintain. However, when the flow of gas gets blocked, the burner heads can't burn efficiently. The best indicator for the efficiency of LPG system is the irregular flame patterns and yellow flames. Formation of soot in both side of the burners, cleaning methods and interval improves the efficiency and reduce the LPG consumption. 		
Recommendation (Target)	 LPG commercial burners are made up of cast iron in which smoke formation is high and frequently able to crack due to aging. It is recommended to clean the burner every week with solvent rinsed and gently clean the holes with ordinary fine cloth. Also it is highly encouraged to swap with active spare burners. The investment on spare burners are less expensive and let us make it a practice to swap the burner every week. Also look for an alternative with Stainless Steel (SS) burners (slightly costlier compared with existing one). But the lifespan is longer and replace cost is much reduced. 		

Parameters	Description			
Swapping of new burners every week and cleaning of existing burner with natural ingredients				
(Ex: Dishwashing detergent,	Non-abrasive scrub pad, Mic	crofiber towels)		
Energy Calculation	Before	After		
Expected Savings on LPG	-	3 %		
(From overall LPG consumption; nearly 50 % consumption goes to burner based cooking)				
LPG Consumption/Annum	5,946 ¹	5,768 kg		
LPG Savings/Annum	-	178 kg		
Equivalent to 9 no's of 19	.6 kg cylinders with a financi	al savings of		
178 kg x Rs.58	.30/kg = Rs. 10,377 / Annu	m		
Initial Investment	-	Rs. 5,000 /-		
However purchasing of cleaning ingr	redients for Rs. 5,000 with a	payback of 0.50 Years		
CO ₂ Redu	ction – 0.3 Tons/Annum			

(1: 50 % is being accounted from overall LPG consumption of 5,946/annum)

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

PART-B

ENVIRONMENTAL AUDIT REPORT

5. ANALYSIS OF WATER CONSUMPTION

5.1: Source of Water, Storage and Distribution:

Water is one of the main consumable in the college campus. ACET gets the fresh water from three sources namely i) Bore well ii) Outsourced water and iii) Rain Water Harvesting (RWH). Table-2 shows the source of water, location of storage along with their application.

Type of Water	Source	Location of Storage	Application
Fresh Water		 In front of the hostel Building Near Main Block Near girls hostel Harvesting (RWH) pits are e entire college campus 	 Cooking Utensil Cleaning Bathing Clothing washing
Treated Water from STP	From STP plant	Stored in a separate tank located at the top of the R-Block	For entire campus gardening

 Table-2: Source of Water, Location of Storage and Application

5.2: Reverse Osmosis (RO) Plant and Treated Water for Drinking Application:

- The college management is keen on providing uninterrupted, safe and healthy drinking water to all; throughout the year. This water is being checked in an accredited laboratory and ensures that the water is potable.
- Separate RO plant of 1,200 LPH capacity is being installed in the R-Block (at the rooftop). Raw water is being fed as an input. Output RO water is being stored in a 3,000 litre water tank and then distributed for drinking application. The specifications of RO Plant and distribution of potable water to the entire campus is given in Table-3.

S. No.	Parameters	Description	
1.	Capacity of the RO Plant	1,200 Litre per hour	
2.	Location	R-Block Building (Top)	
3.	Source of raw water	Bore water + Outside water	
4.	% of RO & grey water output	25 & 75 % respectively	
5.	Usage of grey water	Gardening and toiler flushing for the academic block	
6.	Cleaning schedule of carbon & sand filter	Yearly twice	
7.	Cleaning schedule of membrane	Every Month	
8.	Back washing duration	• 10 min/day	
9.	Functioning of RO Plant	Manual (operated based on the students strength)	
10.	Provision for automatic controller	Not available (To be implemented)	

Table-3: Specification of RO Plant and Potable Water Distribution

11.	Tank capacity of the RO Water	3,000 Litre (Heavy Plastic)
12.	Tank capacity of the raw Water	• 50,00 Litre (Cement)
13.	Water flow control	Butterfly valve (kept at maximum position)

5.3: Recommendations for RO Plant:

- Operate the RO plant in automatic mode of operation; as this step saves energy required by reducing the running hours of i) feed water pump, ii) main RO motor, iii) outlet water pump and iv) dozing pump. Further converting the plant operation from manual to automatic reduces the man-power, maintenance scheduling and also reduces the water overflow.
- Output pressure of the water distribution line must be reduced (now it is in maximum position and may at 4-5 bar) by adjusting the butterfly value and set the pressure to 2.5 3 bar.
- Install the water flow meter at each of the main line (distributed to each building and floor), so that the usage of water must be measured and monitored.
- With advent of smart technologies, it is possible to have centralized monitoring in real-time using Internet of Things (IoT), Geographic Information System (GIS) software, etc. as per **Jal Jeevan Mission**, Department of Drinking Water & Sanitation Ministry of Jal Shakti.

5.8: Rain Water Harvesting (RWH) Pit:

- Water is an important natural resource and is the very basis of our life. Water is a cyclic resource which can be used again and again after cleaning. The best way to conserve water is its judicious use. RWH is an option which has been adopted to collect and storage of rain water and also other activities aimed at harvesting surface water, prevention of loss through evaporation and seepage.
- The college has a suitable recharge structure (recharge pit) for rain water harvesting located on the left side of the mechanical block. The overall rain water collected in all the blocks are properly rooted to reside in this pit and assist to increase the ground water table.
- 17 no's of Rain Water Harvesting (RWH) pits are located throughout the entire college campus. Materials used are; 6 feet depth with 3 feet dia, filled with 8 layers of sand and coal.

RWH Collection Pit Located in R-Block as a sample

Page 27 of 63

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

PART-B

ENVIRONMENTAL AUDIT REPORT

6. ESTIMATION OF

CO2 EMISSION AND NEUTRALIZATION

(ELECTRICITY, TRANSPORT & LPG)

6.1: Assessment of Annual Energy Usage:

Table-4 shows the types of energy carriers used for their regular operation in the college campus along with application area and their source.

S. No.	Type of Energy Carrier	Application Area	Source of Procurement	
1.	Electricity (LT)	All electrical/electronic equipment's	From TANGEDCO	
2.	Roof Top Solar PV Plant (94.08 kW)		Roof top captive power plant	
3.	Diesel	For transport vehicles and DG	From authorised distributor	
4.	LPG	Cooking		
5.	Fire Wood	Hot Water generation for bathing	From local vendor	

Table-5 represents the annual energy consumption of all type of fuels used in the college & power generation from SPV Plant during April-2019 to March-2020.

S.	Month	Units Consumed	Diesel Consu	mption (Litre)	Vehicle Petrol	LPG Consumption	Wood	Electricity Generation
No.	WORT	(kWh)	Vehicles	DG	Consumption (Litre)	(kg)	Consumption (kg)	from SPV (kWh)
1.	Mar-19	25,016.0	2,784.5	5.8	131.1	314.0	2.8	2,250.0
2.	Apr-19	26,232.8	5,316.9	330.2	293.4	843.9	4.7	2,600.0
3.	May-19	24,185.6	2,530.7	457.6	148.6	785.0	4.3	3,200.0
4.	Jun-19	18,708.0	4,641.8	1,045.6	205.9	0.0	0.0	1,700.0
5.	Jul-19	19,352.8	6,686.9	1,483.0	172.5	745.8	4.2	2,400.0
6.	Aug-19	22,119.8	6,039.5	278.0	194.5	255.1	2.7	0.0
7.	Sep-19	22,652.0	5,992.6	694.0	178.6	765.4	4.5	2,500.0
8.	Oct-19	18,089.6	5,373.4	301.1	105.7	608.4	4.3	2,600.0
9.	Nov-19	17,713.2	4,511.4	193.7	261.5	588.8	4.2	2,250.0
10.	Dec-19	17,215.6	3,397.2	36.0	119.4	392.5	3.4	700.0
11.	Jan-20	13,953.6	4,866.9	139.7	223.5	98.1	1.1	2,900.0

Table-5: Annual Energy Consumption of all types of Fuels, Power & LPG Generation

28

12.	Feb-20	15,741.2	6,273.3	32.0	206.3	549.5	3.6	9,900.0
Av	/erage	20,081.7	4,867.9	416.4	186.8	495.5	3.3	2.8
	Fotal	2,40,980.2	58,415.1	4,996.7	2,241	5,946.4	39.8	33,000.0
	l otal	2,70,000.2	63,4	11.8	_ , _ , _ , _	0,0 10.1	000	00,000.0

6.2: Estimation of CO₂ for Transport Vehicles:

The college is committed to green environment not only in the campus; but also to the entire atmosphere. The list of transporting vehicles available in the college campus along with their fuel type and usage are represented in Table-6;

 Table-6: List of Transporting Vehicles used in the College

S. No.	Type of Vehicle	Make, Model & YoM	Fuel Used	No. of Vehicles	Date of FC & Due Date	Non Pollution Certified (Y/N)
1.	Mini Bus - 5	Eicher, Feb 2010	Diesel	1	04.08.2020	Yes
2.	Mini Bus - 6	Eicher,Apr 2010	Diesel	1	04.08.2020	Yes
3.	Mini Bus - 15	Tata Star bus, Oct 2012	Diesel	1	07.02.2021	Yes
4.	Mini Bus - 16	Tata Star bus, Sep 2012	Diesel	1	09.11.2021	Yes
5.	Mini Bus - 25	Tata, Jul 2015	Diesel	1	04.03.2023	Yes
6.	Mini Bus - 27	Force, Jun 2015	Diesel	1	04.03.2023	Yes
7.	Bus - 10	Ashok Leyland, Apr 2012	Diesel	1	12.09.2020	Yes
8.	Bus - 12	Ashok Leyland, Apr 2012	Diesel	1	09.10.2020	Yes
9.	Bus - 14	Ashok Leyland, Apr 2012	Diesel	1	02.06.2020	Yes
10.	Bus - 22	Tata, May 2014	Diesel	1	02.06.2020	Yes
11.	Bus - 23	Tata, Aug 2014	Diesel	1	18.02.2023	Yes
12.	Bus - 24	Tata, May 2014	Diesel	1	13.08.2020	Yes

13.	Car - Innova	Toyota, Oct 2013	Diesel	1	22.10.2028	Yes
14.	Car - Bolero	Mahendra, Feb 2010	Diesel	1	21.02.2025	Yes
15.	Car - Omni	Maruthi Suzuki, Jul 2015	Petrol	1	20.07.2030	Yes
16.	Bike - Star City	TVS, Oct 2011	Petrol	1	11.10.2026	Yes

Annual fuel consumption for transport is <u>58,415.1 litre of Diesel</u> which contributes CO_2 emission of <u>154.2 Tons/Annum</u> + 2,241 litre of Petrol which contributes CO_2 emission of <u>5.4 Tons/Annum</u> and cumulative CO_2 emission is <u>159.6 Tons/Annum</u>

6.3: Estimation of CO₂ Emitted by Annual Fuel Consumption:

S.	Description		Тур	e of Fuel	and thei	r CO ₂ Conversi	on Process	
No.	Description		Electricity	Die	sel	Petrol	LPG	Wood
10.	Total Annual Consumption		2,40,980.2 KWh	63,411. (Vehicle		2,241 Litre (Vehicle)	5,946.4 kg	39.8 kg
11.	CO ₂ Emission (Tons/Annum)	Α	197.6	167	7.4	5.4	17.8	59.7
12.	Total CO ₂ I	Emis	sion		В	447.9	Tons/Annu	m (†)
13.	No. of Matured 1	rees	Available		D		458	
14.	CO ₂ Neutralized	l due	to Trees		E	10.0 T	ons/Annun	n (↓)
15.	Annual Energy Genera	ated	from SPV Plant		F	33	3, 000 kWh	
16.	CO ₂ Neutralized d	ue to	SPV Plant		G	27.1 T	ons/Annun	n (↓)
17.	Expected Reduction of Annu	ial El	ectricity Consu	mption	н	9:	1,047 kWh	
18.	CO ₂ Neutralized after in	mple	menting ENCO	N	1	75.0 T	ons/Annun	n (↓)
19.	Amount of CO ₂ to be	Neut	tralized (Final)		J	335.8	3 Tons/Ann	um
20.	Per Capita CO ₂ Emission	(Con	sidering Stude	nts +Staff	s)	0.38 To	ons / Perso	n (↔)


(Note: Student strength of 784 + Teaching and technical staff strength of 92 = Total 876 persons)

н	Expected energy savings by implementing the ENCONs proposed in the audit
I	For electrical energy saved = $\left[kWh \text{ saved } x \frac{0.82 \text{ kg of CO2 emission}}{kWh} \right]$.
J	= [C - (E + G + I)]

References:

*https://ecoscore.be/en/info/ecoscore/co2

&http://www.tenmilliontrees.org/trees/#:~:text=A%20mature%20tree%20absorbs%20carbon,the%2
Oaverage%20car's%20annual%20mileage

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

PART-B

ENVIRONMENTAL AUDIT REPORT

7. USAGE OF CHEMICALS, SALTS & ACIDS

(HANDLING, STORAGE AND BEST OPERATING PRACTICES)

7.1: List of Chemicals Used, Storage Method and their Application:

Table-7 shows the list of various chemicals/salts/acids used in the Department of Science and Humanities (S&H) laboratories indicating method of storage, dilution and their application area.

Table-7: List of Chemicals Used, Storage Method and Application

 Name of the Department
 Chemistry
 Name of the Laboratory
 Chemical Analysis Laboratory

S. No.	Chemicals/Salts/Acids Used	Method of Storage	Method of Dilution	Application
1	Hydrochloric Acid		Adding the acid to water slowly and with constant stirring.	Volumetric, Conduct metric and PH metric analysis.
2	Sulphuric Acid	Acid cabinet	Adding the acid to water slowly and with constant stirring.	Volumetric, Conduct metric, potentiometric and PH metric analysis.
3	Nitric Acid(Nice)	Stored in acid cabinets, but it is kept isolated from all other acids.	Adding the acid to water slowly and with constant stirring.	Volumetric, Conduct metric analysis.
4	Acetic Acid Glacial(Nice)	Acid cabinet	Adding the acid to water slowly and with constant stirring.	Volumetric, Conduct metric analysis.
5	Acetone		Adding the acid to water slowly and with constant stirring.	Volumetric analysis.
6	EDTA Disodium Salt		-	Volumetric analysis.
7	Ammonia Solution		Adding the acid to water slowly and with constant stirring.	Volumetric analysis.
8	Copper Sulphate		-	Volumetric analysis.
9	Zinc Sulphate		-	Volumetric analysis.
10	Sodium Carbonate	Stored in medium	-	Volumetric analysis.
11	Potassium Hydroxide	shelf and below eye	-	Volumetric analysis.
12	Potassium lodide	level	-	Volumetric analysis.
13	Sodium Sulphate		-	Volumetric analysis.
14	Magnesium Sulphate		-	Volumetric analysis.
15	Poly Vinyl Alcohol		-	Volumetric analysis.
16	Sodium Thiosulphate		-	Volumetric analysis.
17	Potassium Permanganate		-	Volumetric analysis.
18	Potassium Dichromate	Stored in medium	-	Volumetric analysis.
19	Ammonium Ferrous Sulphate	shelf and below eye level	-	Volumetric analysis.
20	Potassium Thiocyanate		-	Volumetric analysis.

21	Ammonium Chloride
	Phenolphthalein
22	Powder
	Phenolphthalein
23	Solution
24	Ammonium Purpurate
25	Methyl Orange Powder
26	Methyl Orange
20	Solution
27	Starch Soluble (Nice)
28	Eriochrome Black-T
20	Powder(Nice)
20	Silver Nitrate
29	L.R.(Nice)
30	Potassium Chromate
	Sodium
31	Hydroxidepellets
	L.R(Nice)
32	Sodium Chloride
32	L.R.(Nice)
33	Calcium Chloride
34	Barium Chloride
35	Ethanol
36	Sodium Acetate
37	Potassium Chloride
38	1,10,Phenanthroline
30	Hydrate
39	Manganous Sulphate
39	L.R.(Nice)
40	Ferrous Sulphate
41	Ammonium Oxalate
40	Ammonia Buffer
42	Solution
43	Fast Sulphone Black-F
44	Calcium Carbonate

7.2: General Instructions given to the Students while working in the Laboratory:

- Never work in the lab unless a demonstrator or a teacher is present.
- Never taste any chemicals and don't allow chemicals to come in contact with your skin.
- Don't throw waste into the sink; rather they must be thrown into the waste pins.
- Keep all the doors and windows open while working the laboratory.

- Sulphuric acid must be diluted only when it is in cold condition.
- Reagent bottles must never be allowed to accumulate on the work bench.
- Containers used for reactions must be properly labelled.
- Working space should be cleaned immediately.
- Protection and safety is most important.
- While entering the laboratory, everyone must wear lab coat and shoes.
- Prior knowledge on hazardous property of the chemicals is must.
- Seek the advice of faculty and technical staffs during emergency.
- Know the location of first aid box and fire extinguishers located in the laboratory.
- Don't attend any self-medical practices either for you or for your fellow students.

7.3: Recommendations:

- Most of the chemical, salts and acids used in the science department are inorganic in nature and no harmful effects were created during the experiment process. However after completion of each experiment, the wastes are washed in the water sink and are rooted to sewage treatment plant which is designed to handle only sewage; not the effluent.
- It is recommended to create a separate policy for Chemical handling and usage indicating various measures involved starting from procurement of chemical to disposal (Cradle to Grave approach). Ascertain that the chemicals/salts/acids used in the college campus for their academic/research application does not pollute the mother earth.
- The policy must be approved by any regularly convened apex committee (may be Governing Council) and must be disseminated to all stake holders. Also paste the content of the policy in vulnerable points inside the college campus.
- Submit a detailed audit report based on the specified metric (may be developed internally) to the approved committee annually ensure the minimization of chemical pollution.
- Though the quantity of the chemical wastes generated in an annum is small it is appropriate to divert and treat this effluent to some other means (not letting out to STP).
- Two best ways are recommended to treat this is;
 - Design a dedicated system and collect the chemical wastes in a separate tanks with suitable backup facility. Once the tank fills; then transfer the effluent to nearby authorised Effluent Treatment Plant (ETP). An agreement may be made between the college and the ETP authorities over a certain period of time.
 - 2. The college itself can construct and operate a Min-ETP exclusively for the chemical wastes. The management has to think and acts as per their convenience and ensure that the effluents released from the college should not pollute i) Soil, ii) Water and iii) Atmospheric air.

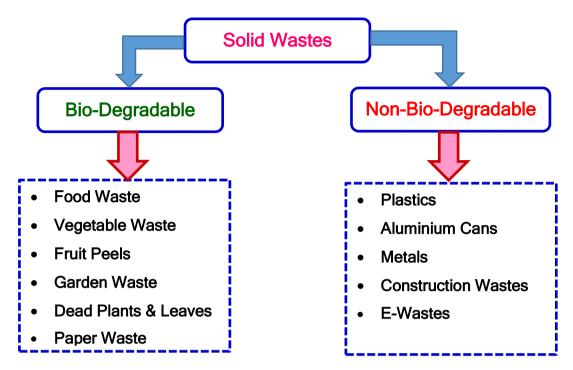
35

A SYNOPSIS OF GREEN AUDIT REPORT

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Kinathukadavu, Coimbatore, Tamilnadu, India-642 109


<u>PART-B</u>

ENVIRONMENTAL AUDIT REPORT

8. SOLID WASTE MANAGEMENT

8.1: Solid Waste Management System:

Different types of wastes generated inside the college promises are represented in the below block diagram.

8.2: Process of Waste Management:

The college management practiced some methods to treat the waste generated and Table-8 shows the process of treating the solid waste generated inside the college campus.

S. No.	Waste Type	Waste Treatment
	Bio-Degradable	Waste Management
1.	Food and Vegetable Waste	Collected & given to nearly by hog forming
2.	Garden Wastes and Plant Leaves	Daily collected and dumped in a yard
3.	Paper Waste	Collected and stored in a separate place.
	Non-Bio-Degradabl	e Waste Management
4.	Plastics	Banned in the college campus (Welcome step)
5.	Construction Wastes	Mostly used by their own construction
6.	Metals	Construction metals or from any other sources are stored in a separate place
7.	Transport Oil + Tyres	Transport oils not covered in ACET scope; as it is being taken by the service authority Vehicle tyres are stored in a separate place and sale to 3 rd party
8.	E-Waste Management	Collected and stored in a separate place.

8.3: Identified E-Waste in the College Campus:

8.4: E-Waste Management Committee:

S. No	Name and Department	Responsibility
1.	Principal/Director/Dean	Chairperson
2.	Member-1:	Co-ordinator (SPOC)
3.	Member-2:	Member
4.	Member-3: Electronics Department	Member
5.	Member-4: Electrical Maintenance	Member
6.	Member-5: Network Maintenance	Member
7.	Member-6: General Maintenance	Member
8.	Member-7: Administrative Member	Member

8.5: E-Waste Policy:

- All the Electrical, Electronics, IT & ITES wastes (listed above) are considered as E-Waste; either completion of their life cycle or repaired during working condition.
- Once these wastes are identified; the same must be informed to the committee through E-slip (format to be prepared).
- The committee should evaluate the same based on the details submitted before disposing the material (Rule based format to be prepared).
- Once the committee approves; then this must be weighted and taken to storage area. (Separate area must be earmarked to store E-waste with necessary facilities).
- A log book must be maintained for E-waste management (format to be prepared)
- Establish an agreement with E-waste trader (a singed MoU copy must be produced in the audit report). The committee is the responsible to communicate to the trader regarding the amount of waste collected. (This may be fixed either based on weight of the waste or period of collection)

• Dispose the material to the vendor as per the policy and maintain the relevant documents.

Note:

- Prepare a flow chart for collection of E-waste from Generation to Disposal and paste it on appropriate places
- An electronic weighing scale (with suitable capacity) must be installed in the storage yard and should be properly calibrated.
- One emergency lamp (with UPS supply) must be installed along with suitable fire extinguisher. Ensure proper ventilation in the yard.
- Form rule for declaring the waste as E-Waste.
- Assign the singing authorities
- Identify a third party vendor to procure the E-waste from the college.
- Establish MoU with that party.
- Disseminate the following information at appropriate places i) E-Waste Policy, ii) Process Methodology, iii) Copy of MoU with third party vendor, iv) Contact persons mobile no. and E-mail.
- Identify certain vehicle to carry the waste from generation to storage yard.
- Provide training to the man power those are handling the waste.
- Maintain separate Delivery Challan, Billing, Weighing mechanism for handling the E-Waste.
- Update the status of E-waste (through digital circular) to all the concerned management representatives, faculty members and staff at regular interval (month wise is good).

8.6: Recommendations:

- Except vegetable and food wastes; all other wastes must be measured and monitored on daily basis. Record the values and maintain separate record for each.
- Establish an MOU with 3rd party for selling the waste and document it.
- Like E-waste; develop separate polices for all type of wastes indicating i) Identification of sources of waste generation, ii) Segregation process, iii) Waste handling (from source to storage to disposal), iv) Recycling-Reuse methods and v) Effective disposal.
- Encourage and educate all the stakeholder to reduce the waste generation and reuse the same.

A SYNOPSIS OF GREEN AUDIT REPORT

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

<u>PART-C</u> GREEN AUDIT REPORT

9. ROOF TOP SOLAR PV POWER PLANT (Green Energy Generation)

9.1: Specifications of the Roof Top Solar PV Plant (SPP):

Total Capacity (kWp)	94.08 KW						
	Specific	ations of	Individua	al Panel			
Panel Make/Model			Trino So	olar			
P _{max} 245W V _{max}	30.2V	I _{max}	8.13A	V _{oc}	37.5V	I _{sc}	8.68
Location of SPV Plant			Top of t	the R BI	ock and syr	nchronize	d to MV
					panel PCC).	
Panel Orientation					North - Sou	th	
Availability of Tracking					NIL		
No. of Panels per Inver	er				76 No's		
Total No. of Panels					384 No's		
DC Bus Voltage			200-1000V DC				
	Inv	verter Sp	pecifications				
No. of Inverters			5 No's				
Make and Model No.			Delta and RPI - M20A				
Power Rating			20 kW				
Output Voltage and Fre	quency		3/N/PE, 400 V AC; 50/60 Hz				
	Ge	eneral Sp	ecificatio	ns			
Number of DC Earthing	l		1				
Number of Inverter Ear	hing		AC Earthing - 2				
Frequency of Panel Cle	aning		Cleaning at every month; However must				nust
	make a proper scdule and strickly follow the						
	same.						
Average Units Generate	ed per Day		4 to 5 Units/day				
Year of Installation			2015				
Date and Month of Pow	er Generatio	n	December; 2016				

Table-9: Specifications of Roof Top Solar PV Plant

9.2: Recommendations:

- Maintain a separate record for i) Daily production of energy (export) and ii) Daily import of energy from TANGDCO. Also maintain the fault/maintenance record of entire PV plant including Panel, Array junction box, Connector, Inverter and Earthing system.
- Similarly maintain a record for panel cleaning schedule. Ensure that for each cleaning, the power generation must increase.
- Ensure that the solar PV plant has to connect in all the days and the power generation must be fully utilized by the college loads during day time in order to achieve quicker payback for the investment made towards setting up of the plant.

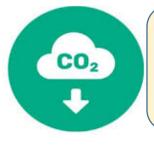
A SYNOPSIS OF GREEN AUDIT REPORT

Details of the Client

M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY Kinathukadavu, Coimbatore, Tamilnadu, India-642 109

<u>PART-C</u> GREEN AUDIT REPORT

10. LIST OF MATURED TREES IN THE


COLLEGE CAMPUS (GREEN COVERAGE)

10.1: Campus Greenery:

The college management planted many native trees inside the campus and is completely covered with matured trees grown for more than 10 years. Total number of matured trees available in the college campus is <u>458 with 15 varieties of trees</u>. Apart from the mature trees; preserving the ecology; the entire college campus is planted with various flowing shrubs and pushes. Table-10 shows the list of matured trees available inside the college campus.

S.	Location	Name of the Tree	Botanical Name	Quantity				
No.	(Wing/Block/Area)	Name of the free	Botanical Name	Quantity				
1.		Coconut Tree	Cocos nucifera L	67				
2.		Punga Tree	Millettia pinnata	211				
3.		Neem Tree	Azadirachta indica	45				
4.		Guava Tree	Psidium guajava	08				
5.		Mango Tree	Mangifera indica	04				
6.		Almond Tree	Prunus dulcis	03				
7.	All around the	Nelli Tree	Phyllanthus emblica	03				
8.	campus	Bamboo Tree	Bambusoideae	03				
9.		May flower tree	Delonix regia	80				
10.		Thoong	u moonji Tree	23				
11.		Lime Tree	Citrus limon	02				
12.		Senbaga tree	Magnolia champaca	21				
13.		Kathi savukku tree	Acacia auriculiformis	05				
14.	In front of B block	Palm tree	Arecaceae	04				
15.	15. Garden Perunkondrai Peltophorum pterocarpum							
	Total							
(after omitting Coconut 1	Fotal No. of Tree Free – Since its CO2 o	contribution is less)	458				

Table-10: List of Matured Tree Available in the College Campus

Total No. of Matured Trees available in the college campus is **458** which contributes for **CO₂ reduction of <u>10.0</u> Tons/Annum**

10.2: List of Shrubs (Bushes):

S. No.	Location (Wing/Block/Area)	Name of the Shrubs	Botanical Name	Quantity
INO.	(Willy/Diock/Alea)	Siliubs		
1.		Dwarf Shrubs		45
2.	All around the	Nithyakalyani	Catharanthus roseus	35
3.	campus	Arali sedi	Nerium oleander	25
4.		Yello Arali	Peltophorum	15
			pterocarpum	
F	In front of B & D	Croon planta		16
5.	Block	Green plants		16
	136			

10.3: List of Flowering Shrubs:

S.	Location	Name of the	Botanical Name	Quantity	
No.	(Wing/Block/Area)	Flowing Shrubs	Botanical Name	Quality	
1.	In front of bus stoping	Rose shrub		13	
2.	In front of B Block	Evergreen Shrub		20	
3.	In front of portico	Beauty flower		04	
4.	In front of R Block	Evergreen Shrub		24	
	61				

END OF THE REPORT

This synopsis report is prepared as a part of the Green Audit (Covering Energy, Environment and College Greenery) conducted at **M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY,** Kinathukadavu, Coimbatore, Tamilnadu, India-642 109 **conducted** by **M/s. RAM-KALAM CENTRE FOR ENERGY CONSULTANCY AND TRAINING,** Coimbatore-641 062, Tamilnadu, India.

CERTIFICATE FOR GREEN AUDIT

RAM KALAM -CENTRE FOR ENERGY CONSULTANCY & TRAINING

CHENNAI COIMBATORE ERODE (Regt. Ofice No. 8, VPK Garden, Coimbatore-641 062, Mobile: +91-99420 14544, 80567 19372, Email: ramkalamcect@gmail.com) (GST No. 33AAZFR8890A1ZN)

CERTIFICATE FOR GREEN AUDIT PROCESS

This is to certify that, we have conducted a <u>Green Audit</u> in M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET), Kinathukadavu, Coimbatore, Tamilnadu, India - 642 109 on 10 MARCH 2020. This audit process investigates the following activities;

- Coverage of matured trees (nearly 458 trees available in the college campus).
- II) Implementation of Renewable Energy Systems for regular activities.
- III) Assessment of Rooftop Solar PV Plant (94.08 kW Grid Interactive Model).

(Audited and Accounted from March-2019 to February-2020)

Thank You

Yours Truly,

O.R. Simou

(Dr. S.R. SIVARASU)

Dr. S.R. SIVARASU, Ph.D., BEE Certified Energy Auditor (EA-27299) Lead Auditor - ISO 14001: EMS IGBC - AP, GRIHA - CP Mobile: 80567 19372, 99420 29372 E-Mail: ramkalamcect@gmail.com

CERTIFICATE FOR ENERGY AUDIT

RAM KALAM -CENTRE FOR ENERGY CONSULTANCY & TRAINING

CHENNAI COIMBATORE ERODE (Regt. Ofice No. 8, VPK Garden, Coimbatore-641 062, Mobile: +91-99420 14544, 80567 19372, Email: ramkalamcect@gmail.com)

(GST No. 33AAZFR8890A1ZN)

CERTIFICATE FOR ENERGY AUDIT PROCESS

This is to certify that, we have conducted a detailed <u>Energy Audit</u> in M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET), Kinathukadavu, Coimbatore, Tamilnadu, India - 642 109 on 10 MARCH 2020. The audit team has identified <u>O8 Energy Conservation</u> <u>Proposals (ENCONs)</u> and summary of the Energy Audit Process is given below.

S. No.	Description	Parameters		
1.	Present Annual Energy Consumption	2,40,980 kWh + 5,946 kg of LPG		
2.	Present Annual Energy Cost	Nearly Rs. 23.7 Lakhs		
3. Proposed % of Energy Savings (through ENCON) 4. Proposed Annual Energy Savings		38 % of Electrical + 3 % of LPG		
		91,047 kWh + 178 kg of LPG		
5. Proposed Financial Savings		Rs. 7.7 Lakhs		
6. Initial Investment Required		Rs. 27.0 Lakhs		
7.	Simple Payback Period	Nearly 3.5 Years		

Equipment's/Systems Audited:

Electrical System	Thermal System
Electrical System & Network	Inverter, UPS and Battery System
 Lighting, Fan & Air Conditioners 	Boller and Steam System
 Solar PV System 	LPG Consumption

(Audited and Accounted from March-2019 to February-2020)

Thank You

Yours Truly, B.R. Simmon

(Dr. S.R. SIVARASU)

Dr. S.R. SIVARASU, Ph.D., BEE Certified Energy Auditor (EA-27299) Lead Auditor - ISO 14001: EMS IGBC - AP, GRIHA - CP Mobile: 80567 19372, 99420 29372 E-Mail: ramkalamcect@gmail.com

CERTIFICATE FOR ENVIRONMENT AUDIT

RAM KALAM -CENTRE FOR ENERGY CONSULTANCY & TRAINING

CHENNAI COIMBATORE ERODE (Regt. Ofice No. 8, VPK Garden, Coimbatore-641 062, Mobile: +91-99420 14544, 80567 19372, Email: ramkalamcect@gmail.com)

(GST No. 33AAZFR8890A1ZN)

CERTIFICATE FOR ENVIRONMENTAL AUDIT PROCESS

This is to certify that, we have conducted an <u>Environmental Audit</u> in M/s. AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY (ACET), Kinathukadavu, Coimbatore, Tamilnadu, India - 642 109 on 10 MARCH 2020. This audit process highlights the present CO₂ emission and methods adopted to neutralize the same in the college campus.

S.	Description	Type of Fuei and their CO ₂ Conversion Process						
No.	0. Description		Electricity	Die	sel	Petrol	LPG	Wood
1.	Total Annual Consumption				8 Litre + DG)	2,241 Litre (Vehicle)	5,946.4 kg	39.8 kg
2.	CO2 Emission (Tons/Annum)	A	197.6	167	.4	5.4	17.8	59.7
3.	Total CO ₂ Emission				B	447.9	Tons/Annu	m (†)
4.	No. of Matured Trees Available				D	458		
5.	CO ₂ Neutralized due to Trees				E	10.01	ons/Annun	n (‡)
6.	CO ₂ Neutralized due to SPV Plant				G	27.11	ons/Annun	n (Ļ)
7.	CO ₂ Neutralized after implementing ENCON				1	75.0 T	ons/Annun	n (‡)
8.	Amount of CO ₂ to be Neutralized (Final)				1	335.8	Tons/Ann	um
9.	Per Capita CO ₂ Emission (Considering Students +Staff			s)	0.38 To	ns / Perso	n (↔)	

System Audited		Systems Inspected		
•	Electricity Consumption & Generation	•	Solid and E-Waste Handling & Management	
•	Diesel Consumption (Vehicles + DG)	•	Usage of Chemical, Salts & Acids	
•	LPG Consumption	•	Water Purifier and Distribution System	

(Audited and Accounted from March-2019 to February-2020)

Thank You

Yours Truly, B.R. Simeer

(Dr. S.R. SIVARASU)

Dr. S.R. SIVARASU, Ph.D., BEE Certified Energy Auditor (EA-27299) Lead Auditor - ISO 14001: EMS IGBC - AP, GRIHA - CP Mobile: 80567 19372, 99420 29372 E-Mail: ramkalamcect@gmail.com

BEYOND THE CAMPUS ENVIRONMENTAL PROMOTIONAL ACTIVITIES

Swachh Bharat Mission

	ANNA UNIVERSITY Chennal - 600 025	AKSHAYA COLLEGE OF	1 3 0 CT 2016 5 TODA 14-2235 1955 EMOINSERING AND TECHNOLOGY LUS RHARAF QR 5: 642109
REGISTRAR Lr.No.19764 /SA 3/2016		Chairman	
To		Trustee	
The Principal of all Government / Self-financing E Autonomous Colleges affiliated under Anna Univ		ivutoint 1	
2. The Dean of all Constituent Colleges of Anna Uni		Director CP	tollo
Sir / Madam,		Principal	TRANK

- Sub: Anna University To follow Swachh Bharat Mission In higher educational Institutions – Quarterly report requested – Reg.
- Ref: Lr.No.3903/U2/2016, dated: 23.09.2016 from Principal Secretary to Governor, Governor's Secretariat, Raj Bhavan, Chennai.

I am to inform that the University has received a letter from the Principal Secretary to Governor, Governor's Secretariat, Raj Bhavan, and Chennai regarding follow up of "Swachh Bharat Mission" in Educational Institutions.

Based on this, you are advised to follow the objectives of Swachh Bharat Mission, among other things, aim to effect behavioral change regarding healthy sanitation practices and generate awareness about sanitation and its linkage with public health.

The colleges should involve in a greater manner in carrying forward the Swachh Bharat Mission by actively involving the students as well as the Staff of the Colleges. The activities so carried out should be taken beyond the campuses to surrounding/nearby villages.

In this connection, the colleges have to draw up specific programme for your insitution over the next one year involving the participation of students, NSS Volunteers, Faculty and Staff for carrying forward the objectives of Swachh Bharat Mission and <u>send the quarterly</u> report on the activities carried out to the Director, Centre for Student Affairs, Anna University, Chennai.

Yours faithfully,

25.01.2017

Swachh Bharat mission (Campus Cleaning)

National Service Scheme/YRC unit of Akshaya College of Engineering and Technology organized a "Swachh Bharat mission (Campus Cleaning)" on 25.01.2017 at our college campus. The student volunteers participated in the mission by cleaning the surroundings of campus.

"Swachh Bharat Mission (Campus Cleaning)" held at Akshaya College of Engineering and Technology on 25.01.2017

TREE PLANTATION

15.08.2016

Tree Plantation Programme

National Service Scheme/YRC unit of Akshaya College of Engineering and Technology organized a "Tree Plantation Programme" on 15.08.2016 at our college campus. Our college Director Dr. K. Thanushkodi, inaugurated the Tree Plantation Programme. The NSS student volunteers and faculty members participated in this event and Planted Around 200Saplings.

"NSS volunteers on Tree Plantation Programme" held at Akshaya College of Engineering and Technology on 15.08.2016

Dr. J. M

PRINCIPAL Akshaya College of Engineering and Technology Kinathukadavu, Coimbatore - 642 109

VIDAITHELU

PLANTING AND DISTRIBUTION OF SIPLINGS

Page 58 of 63

Rotaract club of Akshaya College of Engineering and Technology Rotaractors conducted Community Service project "VIDAITHELU" planting and distributing saplings to the public people held at Akshaya College of Engineering and Technology on 29.08.2018.

Page 59 of 63

NURTURE THE NATURE FOR THE FUTURE

awareness to eradicate the plastic

Bag

Page 60 of 63

Rotaractors from Akshaya College of Engineering and Technology organized Nurture the Nature for the Future event to create awareness to eradicate the plastic bags and use Canvas bags and cotton bags at Codissia, Coimbatore on 12.04.2018.

SPROUT THE SAPLINGS

Rotaractors from Akshaya College of Engineering and Technology organized SPROUT THE SAPLINGS event and planted saplings with the public people and created awareness about the importance of tree saplings at Pollachi on 09.04.2018.

Page 63 of 63